Note
Go to the end to download the full example code.
Requesting cutouts of AIA images from the JSOC#
This example shows how to request a cutout of a series of AIA images from the JSOC.
import os
import matplotlib.pyplot as plt
import astropy.units as u
from astropy.coordinates import SkyCoord
from astropy.time import Time
from astropy.visualization import ImageNormalize, SqrtStretch
import sunpy.coordinates # NOQA
import sunpy.map
from sunpy.net import Fido
from sunpy.net import attrs as a
As this is an example, we have already worked out where we need to crop for the active region we want to showcase.
start_time = Time('2012-09-24T14:56:03', scale='utc', format='isot')
bottom_left = SkyCoord(-500*u.arcsec, -275*u.arcsec, obstime=start_time, observer="earth", frame="helioprojective")
top_right = SkyCoord(150*u.arcsec, 375*u.arcsec, obstime=start_time, observer="earth", frame="helioprojective")
Now construct the cutout from the coordinates above
above using the Cutout
attribute.
cutout = a.jsoc.Cutout(bottom_left, top_right=top_right, tracking=True)
Exporting data from the JSOC requires registering your email first. Please replace this with your email address once you have registered like so: jsoc_email = “your_email@example.com” See this page for more details.
jsoc_email = os.environ["JSOC_EMAIL"]
Now we are ready to construct the query. Note that all of this is the same for a full-frame image except for the cutout component. We will download images from a 12 hour interval centered on the time of the above cutout. We request one image every 2 hours.
query = Fido.search(
a.Time(start_time - 6*u.h, start_time + 6*u.h),
a.Wavelength(171*u.angstrom),
a.Sample(2*u.h),
a.jsoc.Series.aia_lev1_euv_12s,
a.jsoc.Notify(jsoc_email),
a.jsoc.Segment.image,
cutout,
)
print(query)
Results from 1 Provider:
7 Results from the JSOCClient:
Source: http://jsoc.stanford.edu
T_REC TELESCOP INSTRUME WAVELNTH CAR_ROT
-------------------- -------- -------- -------- -------
2012-09-24T08:56:01Z SDO/AIA AIA_3 171 2128
2012-09-24T10:56:01Z SDO/AIA AIA_3 171 2128
2012-09-24T12:56:01Z SDO/AIA AIA_3 171 2128
2012-09-24T14:56:01Z SDO/AIA AIA_3 171 2128
2012-09-24T16:56:01Z SDO/AIA AIA_3 171 2128
2012-09-24T18:56:01Z SDO/AIA AIA_3 171 2128
2012-09-24T20:56:01Z SDO/AIA AIA_3 171 2128
Submit the export request and download the data.
INFO: 7 URLs found for download. Full request totaling 7MB [sunpy.net.jsoc.jsoc]
Now that we’ve downloaded the files, we can create
a MapSequence
from them and animate
them.
sequence = sunpy.map.Map(files, sequence=True)
fig = plt.figure()
ax = fig.add_subplot(projection=sequence.maps[0])
ani = sequence.plot(axes=ax, norm=ImageNormalize(vmin=0, vmax=5e3, stretch=SqrtStretch()))
plt.show()