Source code for

This module provides a set of colormaps specific for solar data.
from copy import deepcopy

import matplotlib
import matplotlib.pyplot as plt
import numpy as np

import astropy.units as u

from sunpy.visualization.colormaps import color_tables as ct

__all__ = ['show_colormaps', 'cmlist']

sdoaia94 = ct.aia_color_table(94*u.angstrom)
sdoaia131 = ct.aia_color_table(131*u.angstrom)
sdoaia171 = ct.aia_color_table(171*u.angstrom)
sdoaia193 = ct.aia_color_table(193*u.angstrom)
sdoaia211 = ct.aia_color_table(211*u.angstrom)
sdoaia304 = ct.aia_color_table(304*u.angstrom)
sdoaia335 = ct.aia_color_table(335*u.angstrom)
sdoaia1600 = ct.aia_color_table(1600*u.angstrom)
sdoaia1700 = ct.aia_color_table(1700*u.angstrom)
sdoaia4500 = ct.aia_color_table(4500*u.angstrom)

sohoeit171 = ct.eit_color_table(171*u.angstrom)
sohoeit195 = ct.eit_color_table(195*u.angstrom)
sohoeit284 = ct.eit_color_table(284*u.angstrom)
sohoeit304 = ct.eit_color_table(304*u.angstrom)

# Solar Orbiter EUI
# These are deliberately the same as AIA
solohri_euv174 = deepcopy(ct.aia_color_table(171*u.angstrom)) = 'SolO EUI HRI 174 angstrom'
solofsi174 = deepcopy(ct.aia_color_table(171*u.angstrom)) = 'SolO EUI FSI 174 angstrom'
solofsi304 = deepcopy(ct.aia_color_table(304*u.angstrom)) = 'SolO EUI FSI 304 angstrom'
# Lyman alpha is a modified IDL red color table
solohri_lya1216 = ct.solohri_lya1216_color_table()

goesrsuvi94 = ct.suvi_color_table(94*u.angstrom)
goesrsuvi131 = ct.suvi_color_table(131*u.angstrom)
goesrsuvi171 = ct.suvi_color_table(171*u.angstrom)
goesrsuvi195 = ct.suvi_color_table(195*u.angstrom)
goesrsuvi284 = ct.suvi_color_table(284*u.angstrom)
goesrsuvi304 = ct.suvi_color_table(304*u.angstrom)

# The color tables below returns one of the fundamental color tables for SOHO
# LASCO images. These are not the same as those used in SSWIDL.  This is
# because the SSWIDL color scaling for LASCO level 0.5 and 1.0 is highly
# compressed and does not display the data well.
soholasco2 = deepcopy(matplotlib.colormaps["gist_heat"]) = 'SOHO LASCO C2'
soholasco3 = deepcopy(matplotlib.colormaps["bone"]) = 'SOHO LASCO C3'

# These are the SSWIDL color tables.
sswidlsoholasco2 = ct.sswidl_lasco_color_table(2)
sswidlsoholasco3 = ct.sswidl_lasco_color_table(3)

stereocor1 = ct.cor_color_table(1)
stereocor2 = ct.cor_color_table(2)

stereohi1 = ct.stereo_hi_color_table(1)
stereohi2 = ct.stereo_hi_color_table(2)

yohkohsxtal = ct.sxt_color_table('al')
yohkohsxtwh = ct.sxt_color_table('wh')

hinodexrt = ct.xrt_color_table()
hinodesotintensity = ct.sot_color_table('intensity')

trace171 = ct.trace_color_table('171')
trace195 = ct.trace_color_table('195')
trace284 = ct.trace_color_table('284')
trace1216 = ct.trace_color_table('1216')
trace1550 = ct.trace_color_table('1550')
trace1600 = ct.trace_color_table('1600')
trace1700 = ct.trace_color_table('1700')
traceWL = ct.trace_color_table('WL')

hmimag = ct.hmi_mag_color_table()

kcor = deepcopy(matplotlib.colormaps["gist_gray"]) = 'MLSO KCor'

rhessi = ct.rhessi_color_table()
std_gamma_2 = ct.std_gamma_2()

euvi195 = ct.euvi_color_table(195*u.angstrom)
euvi284 = ct.euvi_color_table(284*u.angstrom)
euvi304 = ct.euvi_color_table(304*u.angstrom)
euvi171 = ct.euvi_color_table(171*u.angstrom)

cmlist = {
    'goes-rsuvi94': goesrsuvi94,
    'goes-rsuvi131': goesrsuvi131,
    'goes-rsuvi171': goesrsuvi171,
    'goes-rsuvi195': goesrsuvi195,
    'goes-rsuvi284': goesrsuvi284,
    'goes-rsuvi304': goesrsuvi304,
    'sdoaia94': sdoaia94,
    'sdoaia131': sdoaia131,
    'sdoaia171': sdoaia171,
    'sdoaia193': sdoaia193,
    'sdoaia211': sdoaia211,
    'sdoaia304': sdoaia304,
    'sdoaia335': sdoaia335,
    'sdoaia1600': sdoaia1600,
    'sdoaia1700': sdoaia1700,
    'sdoaia4500': sdoaia4500,
    'sohoeit171': sohoeit171,
    'sohoeit195': sohoeit195,
    'sohoeit284': sohoeit284,
    'sohoeit304': sohoeit304,
    'soholasco2': soholasco2,
    'soholasco3': soholasco3,
    'sswidlsoholasco2': sswidlsoholasco2,
    'sswidlsoholasco3': sswidlsoholasco3,
    'stereocor1': stereocor1,
    'stereocor2': stereocor2,
    'stereohi1': stereohi1,
    'stereohi2': stereohi2,
    'yohkohsxtal': yohkohsxtal,
    'yohkohsxtwh': yohkohsxtwh,
    'hinodexrt': hinodexrt,
    'hinodesotintensity': hinodesotintensity,
    'trace171': trace171,
    'trace195': trace195,
    'trace284': trace284,
    'trace1216': trace1216,
    'trace1550': trace1550,
    'trace1600': trace1600,
    'trace1700': trace1700,
    'traceWL': traceWL,
    'hmimag': hmimag,
    'irissji1330': ct.iris_sji_color_table('1330'),
    'irissji1400': ct.iris_sji_color_table('1400'),
    'irissji1600': ct.iris_sji_color_table('1600'),
    'irissji2796': ct.iris_sji_color_table('2796'),
    'irissji2832': ct.iris_sji_color_table('2832'),
    'irissji5000': ct.iris_sji_color_table('5000'),
    'irissjiFUV': ct.iris_sji_color_table('FUV'),
    'irissjiNUV': ct.iris_sji_color_table('NUV'),
    'irissjiSJI_NUV': ct.iris_sji_color_table('SJI_NUV'),
    'kcor': kcor,
    'rhessi': rhessi,
    'std_gamma_2': std_gamma_2,
    'euvi171': euvi171,
    'euvi195': euvi195,
    'euvi284': euvi284,
    'euvi304': euvi304,
    'solar orbiterfsi174': solofsi174,
    'solar orbiterfsi304': solofsi304,
    'solar orbiterhri_euv174': solohri_euv174,
    'solar orbiterhri_lya1216': solohri_lya1216,

# Register the colormaps with matplotlib so matplotlib.colormaps['sdoaia171'] works
for name, cmap in cmlist.items():
    matplotlib.colormaps.register(cmap, name=name)

[docs] def show_colormaps(search=None): """ Displays a plot of the custom color maps supported in SunPy. Parameters ---------- search : str A string to search for in the names of the color maps (e.g. aia, EIT, 171). Case insensitive. Examples -------- >>> import sunpy.visualization.colormaps as cm >>> cm.show_colormaps() # doctest: +IGNORE_WARNINGS >>> cm.show_colormaps(search='aia') # doctest: +IGNORE_WARNINGS >>> cm.show_colormaps(search='171') # doctest: +IGNORE_WARNINGS """ if search is not None: maps = sorted({k: v for (k, v) in cmlist.items() if k.lower().count(search.lower())}) if len(maps) == 0: raise KeyError(f'No color maps found for search term "{search:s}"') else: maps = sorted(cmlist) nmaps = len(maps) + 1 a = np.linspace(0, 1, 256).reshape(1, -1) a = np.vstack((a, a)) fig = plt.figure(figsize=(7, 10), dpi=128) fig.subplots_adjust(top=0.99, bottom=0.01, left=0.3, right=0.99) for i, name in enumerate(maps): ax = plt.subplot(nmaps, 1, i + 1) ax.imshow(a, aspect='auto', cmap=name, origin='lower') ax.xaxis.set_ticks([]) ax.yaxis.set_ticks([]) ax.set_ylabel(name, fontsize=10, horizontalalignment='right', verticalalignment='center', rotation=0)