Note
Go to the end to download the full example code
Creating a visualization with ArrayAnimatorWCS#
This example shows how to create a simple visualization using
ArrayAnimatorWCS
.
import matplotlib.pyplot as plt
from mpl_animators import ArrayAnimatorWCS
import astropy.units as u
import astropy.wcs
from astropy.visualization import AsinhStretch, ImageNormalize
import sunpy.map
from sunpy.data.sample import AIA_171_IMAGE, AIA_193_IMAGE
from sunpy.time import parse_time
To showcase how to visualize a sequence of 2D images using
ArrayAnimatorWCS
, we will use images from
our sample data. The problem with this is that they are not part of
a continuous dataset. To overcome this we will do two things.
Create a stacked array of the images and create a WCS
header.
The easiest method for the array is to create a MapSequence
.
# Here we only use two files but you could pass in a larger selection of files.
map_sequence = sunpy.map.Map(AIA_171_IMAGE, AIA_193_IMAGE, sequence=True)
# Now we can just cast the sequence away into a NumPy array.
sequence_array = map_sequence.as_array()
# We'll also define a common normalization to use in the animations
norm = ImageNormalize(vmin=0, vmax=3e4, stretch=AsinhStretch(0.01))
Now we need to create the WCS
header that
ArrayAnimatorWCS
will need.
To create the new header we can use the stored meta information from the
map_sequence
.
# Now we need to get the time difference between the two observations.
t0, t1 = map(parse_time, [k['date-obs'] for k in map_sequence.all_meta()])
time_diff = (t1 - t0).to(u.s)
m = map_sequence[0]
wcs = astropy.wcs.WCS(naxis=3)
wcs.wcs.crpix = u.Quantity([0*u.pix] + list(m.reference_pixel))
wcs.wcs.cdelt = [time_diff.value] + list(u.Quantity(m.scale).value)
wcs.wcs.crval = [0, m._reference_longitude.value, m._reference_latitude.value]
wcs.wcs.ctype = ['TIME'] + list(m.coordinate_system)
wcs.wcs.cunit = ['s'] + list(m.spatial_units)
wcs.wcs.aux.rsun_ref = m.rsun_meters.to_value(u.m)
# Now the resulting WCS object will look like:
print(wcs)
WCS Keywords
Number of WCS axes: 3
CTYPE : 'TIME' 'HPLN-TAN' 'HPLT-TAN'
CRVAL : 0.0 3.223099507700556 1.385781353025793
CRPIX : 0.0 511.5 511.5
PC1_1 PC1_2 PC1_3 : 1.0 0.0 0.0
PC2_1 PC2_2 PC2_3 : 0.0 1.0 0.0
PC3_1 PC3_2 PC3_3 : 0.0 0.0 1.0
CDELT : 5.0700000000020395 2.402792 2.402792
NAXIS : 0 0
Now we can create the animation.
ArrayAnimatorWCS
requires you to select which
axes you want to plot on the image. All other axes should have a 0
and
sliders will be created to control the value for this axis.
wcs_anim = ArrayAnimatorWCS(sequence_array, wcs, [0, 'x', 'y'], norm=norm).get_animation()
plt.show()
You might notice that the animation could do with having the axes look
neater. ArrayAnimatorWCS
provides a way of setting
some display properties of the WCSAxes
object on every frame of the animation via use of the coord_params
dict.
They keys of the coord_params
dict are either the first half of the
CTYPE
key, the whole CTYPE
key or the entries in
wcs.world_axis_physical_types
here we use the short ctype identifiers for
the latitude and longitude axes.
coord_params = {
'hpln': {
'axislabel': 'Helioprojective Longitude',
'ticks': {'spacing': 10*u.arcmin, 'color': 'black'}
},
'hplt': {
'axislabel': 'Helioprojective Latitude',
'ticks': {'spacing': 10*u.arcmin, 'color': 'black'}
},
}
# We have to recreate the visualization since we displayed it earlier.
wcs_anim = ArrayAnimatorWCS(sequence_array, wcs, [0, 'x', 'y'], norm=norm,
coord_params=coord_params).get_animation()
plt.show()
Total running time of the script: (0 minutes 2.507 seconds)