Enhancing Off-limb emission

This example shows how to enhance emission above the limb.

from __future__ import print_function, division

import numpy as np

import matplotlib.pyplot as plt
import matplotlib.colors as colors

import astropy.units as u

import sunpy.map
from sunpy.data.sample import AIA_171_IMAGE

We first create the Map using the sample data.

aia = sunpy.map.Map(AIA_171_IMAGE)

Next we build two arrays which include all of the x and y pixel indices. We must not forget to add the correct units because we will next pass this into a function which requires them.

x, y = np.meshgrid(*[np.arange(v.value) for v in aia.dimensions]) * u.pix

Now we can convert this to helioprojective coordinates and create a new array which contains the normalized radial position for each pixel

hpc_coords = aia.pixel_to_data(x, y)
r = np.sqrt(hpc_coords.Tx ** 2 + hpc_coords.Ty ** 2) / aia.rsun_obs

Let’s check how emission above the limb depends on distance

rsun_step_size = 0.01
rsun_array = np.arange(1, r.max(), rsun_step_size)
y = np.array([aia.data[(r > this_r) * (r < this_r + rsun_step_size)].mean()
              for this_r in rsun_array])

Next let’s plot it along with a fit to the data. We perform the fit in log-linear space.

params = np.polyfit(rsun_array[rsun_array < 1.5],
                    np.log10(y[rsun_array < 1.5]), 1)

plt.plot(rsun_array, y, label='data')
label = r'fit=Ax^{:.2f}'.format(params[0])
plt.plot(rsun_array, 10**np.poly1d(params)(rsun_array), label=label)
plt.ylabel('mean DN')

We now create our scaling array which we will multiply our original data by 5 In order to not affect the emission on the disk, we set the scale factor to unity for values of r below 1.

scale_exponent = 5
scale_factor = r ** scale_exponent
scale_factor[r < 1] = 1

Let’s now plot and compare the results.

scaled_map = sunpy.map.Map(aia.data * scale_factor, aia.meta)
norm = colors.Normalize(vmin=10, vmax=10000)

fig = plt.figure(figsize=(12, 5))
ax = fig.add_subplot(121, projection=aia)
ax = fig.add_subplot(122, projection=aia)

Total running time of the script: ( 0 minutes 1.340 seconds)

Generated by Sphinx-Gallery